Multiple Integrals under Di erential Constraints: Two-Scale Convergence and Homogenization

نویسندگان

  • Irene Fonseca
  • Stefan Krömer
چکیده

Two-scale techniques are developed for sequences of maps {uk} ⊂ L(Ω; R ) satisfying a linear di erential constraint Auk = 0. These, together with Γconvergence arguments and using the unfolding operator, provide a homogenization result for energies of the type

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogenization of Unbounded Singular Integrals

We study homogenization by Γ-convergence, with respect to the L1-strong convergence, of periodic multiple integrals in W 1,∞ when the integrand can take infinite values outside of a convex bounded open set of matrices.

متن کامل

Homogenization of unbounded singular integrals in W1,

We study homogenization by Γ-convergence, with respect to the L1-strong convergence, of periodic multiple integrals in W 1,∞ when the integrand can take infinite values outside of a convex bounded open set of matrices.

متن کامل

Multi-scale Young Measures

We introduce multi-scale Young measures to deal with problems where multi-scale phenomena are relevant. We prove some interesting representation results that allow the use of these families of measures in practice, and illustrate its applicability by treating, from this perspective, multi-scale convergence and homogenization of multiple integrals.

متن کامل

Wavelet-based Homogenization of Di erential Operators

The exact solutions of PDEs with ne-scale co-eecients and data contain details that make computations expensive. When only the coarse-scale approximations of the solutions are needed simpler equations can be derived in a process called homogenization. Classical homogenization techniques are based on the analytic expansion of the exact solution. There are also limitations, such as periodic-ity o...

متن کامل

Reiterated Homogenization in BV via Multiscale Convergence

Multiple-scale homogenization problems are treated in the space BV of functions of bounded variation, using the notion of multiple-scale convergence developed in [35]. In the case of one microscale Amar’s result [3] is recovered under more general conditions; for two or more microscales new results are obtained. AMS Classification Numbers (2010): 49J45, 35B27, 26A45

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009